PROMOTING THE GROWTH OF HYDROGEN FUEL CELL VEHICLES BY DEVELOPING THE INFRASTRUCTURE

Nathan Fuller
Purdue University
WISE 2013
AGENDA

Background
Defining the issue
Production
Distribution
Utilization
Alternatives
Recommendations
THE ISSUE
Background

• Growth of Fuel Cell Electric Vehicles (FCEVs) will take place as one part of alternative fuel development

• FCEVs helps reduce CO$_2$ emissions and dependence on foreign energy sources
Defining the Issue

• Increased development because of Zero Emission Vehicle (ZEV) Mandate
• Reduce high cost by building the infrastructure to support FCEV growth

FY 2012 Budget Fuel Cells Technologies Office Sub Program Amount
Hydrogen Fuel R&D $33,785,000
Fuel Cell Systems R&D $43,556,000
Technology Validation $8,987,000
Safety, Codes & Standards $6,893,000
Education $0
Systems Analysis $2,925,000
Market Transformation $3,000,000
Manufacturing R&D $1,941,000
Total $101,087,000
THE INFRASTRUCTURE
Hydrogen Production

Table 8.0. Examples of Domestic Hydrogen Production Options and Resource Needs

<table>
<thead>
<tr>
<th>Resource</th>
<th>Resource Availability</th>
<th>Resource Consumption (without hydrogen production for FCEVs)</th>
<th>Resources Needed to Produce Hydrogen for 20 million FCEVs</th>
<th>Increase in Projected Consumption Required for 20 million FCEVs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Current (2038)</td>
<td>Projected (2040)</td>
<td></td>
</tr>
<tr>
<td>Gasification and Reforming</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biomass</td>
<td>384 million(\times 10^{12}) (dry) metric tons/year(^\text{a})</td>
<td>214 million (dry) metric tons/year(^\text{a})</td>
<td>566 million (dry) metric tons/year(^\text{a})</td>
<td>50 million (dry) metric tons/year(^\text{a})</td>
</tr>
<tr>
<td>Coal (with carbon sequestration)</td>
<td>239 billion metric tons (estimated recoverable reserves)(^\text{b})</td>
<td>1,070 million metric tons/year(^\text{a}) (all grades)(^\text{c})</td>
<td>1,153 million metric tons/year(^\text{a}) (all grades)(^\text{c})</td>
<td>54 million metric tons/year(^\text{a})</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>273 trillion cubic feet (proven reserves)(^\text{d})</td>
<td>22 trillion cubic feet(^\text{d})</td>
<td>26 trillion cubic feet(^\text{d})</td>
<td>634 billion cubic feet(^\text{d})</td>
</tr>
<tr>
<td>Water Electrolysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wind</td>
<td>3,500 GWe (nameplate capacity, not power output)(^\text{e})</td>
<td>22.6 GWe (installed nameplate capacity, not power output)(^\text{f})</td>
<td>50 GWe (installed nameplate capacity, not power output)(^\text{f})</td>
<td>46 GWe</td>
</tr>
<tr>
<td>Solar Energy</td>
<td>5,400 GWe (capacity, entire U.S.)(^\text{g})</td>
<td>1,293 GWe (net summer capacity)(^\text{f})</td>
<td>100 – 250 GWe (net summer capacity)(^\text{f})</td>
<td>92 GWe</td>
</tr>
<tr>
<td>Nuclear Energy (high-temperature electrolysis)</td>
<td>87 million metric tons of uranium at $56/kg; 385 million metric tons of uranium at $110/kg(^\text{h})</td>
<td>100.6 GWe(^\text{f}) (power output, using ~22,000 metric tons of uranium/ year)</td>
<td>111.1 GWe(^\text{f}) (power output using ~24,000 metric tons of uranium/ year)</td>
<td>15 GWe (power output, using ~3,200 metric tons of uranium/ year)</td>
</tr>
<tr>
<td>Thermo-Chemical</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nuclear Energy</td>
<td>87 million metric tons of uranium at $86/kg; 385 million metric tons of uranium at $110/kg(^\text{h})</td>
<td>314 GWh(^\text{f}) (thermal output, using ~22,000 metric tons of uranium/ year)</td>
<td>347 GWh(^\text{f}) (thermal output, using ~24,000 metric tons of uranium/ year)</td>
<td>27 GWh (thermal output, using ~1,900 metric tons of uranium/ year)</td>
</tr>
</tbody>
</table>
Hydrogen Distribution

• Centralized
 – Pipelines
 – Tube Trailers
• Distributed
 – Onsite
 – Production
 – Pipelines or
 – Tubes Trailers
• Concerns
 – Cost
 – Technology

Photos from DOE (Above) and EIA (Below)
Hydrogen Utilization

• Currently 9 stations in California open to the public
• Concerns
 – Cost
 – Size
 – Technology

Photos from California Fuel Cell Partnership
THE ALTERNATIVES
Taxes and Subsidies

• Taxes
 – Expansion of “Gas Guzzler” tax
 – Price floor on gasoline and diesel fuel

• Subsidies
 – Tax Credits
 • Hydrogen Fuel Infrastructure
 • Hydrogen Fuel Mixture Excise
 • Hydrogen Fuel Excise Tax
 – Loan Guarantees
Increased Environmental Restrictions

• Corporate Average Fuel Economy (CAFE)
 – Recently increased by NHTSA
 – Do not do this again
 • Rebound Effects
 • Not specific to Alternate Fuel Vehicles
• CO$_2$ emission restrictions
 – Recently increased by EPA
 – Helps to promote Alternate Fuel Vehicles
 • Do not do this again
• Regulation
 – Expedite the establishment of safety codes and standards
Coordination

• Prepare the public
 – Distribute information about hydrogen safety
 – Inform people about the benefits of Alternate Fuel Vehicles
 – Offer incentives to OEMs to demonstrate Alternate Fuel Vehicles to the public

• Actively participate in H2USA
 – Help coordinate the development of the infrastructure with OEMs

Mercedes F-Cell Honda Clarity GM Equinox
Recommendations

• Shift more of Fuel Cell Technology Program budget toward developing better transport and storage for hydrogen and education for the public
• Increase subsidies with a price floor on gasoline and diesel fuel
• Quickly establish safety codes and standards
• Promote demonstrations by OEMs of Alternative Fuel Vehicles